Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Neurochem Res ; 2023 Jun 03.
Article in English | MEDLINE | ID: covidwho-20243431

ABSTRACT

The SARS-CoV-2 spike S1 subunit (S1) can cross the blood-brain barrier and elicit neuroinflammatory response independent of viral infection. Here we examined whether S1 influences blood pressure (BP) and sensitizes the hypertensive response to angiotensin (ANG) II by enhancing neuroinflammation and oxidative stress in hypothalamic paraventricular nucleus (PVN), a key brain cardiovascular regulatory center. Rats received central S1 or vehicle (VEH) injection for 5 days. One week after injection, ANG II or saline (control) was subcutaneously delivered for 2 weeks. S1 injection induced greater increases in BP, PVN neuronal excitation and sympathetic drive in ANG II rats but had no effects in control rats. One week after S1 injection, mRNA for proinflammatory cytokines and oxidative stress marker were higher but mRNA of Nrf2, the master regulator of inducible antioxidant and anti-inflammatory responses, was lower in the PVN in S1-injected rats than in VEH-injected rats. Three weeks after S1 injection, mRNA for proinflammatory cytokines and oxidative stress marker, microglia activation and reactive oxygen species in the PVN were comparable between S1 and VEH treated control rats but were elevated in two groups of ANG II rats. Notably, ANG II-induced elevations in these parameters were exaggerated by S1. Interestingly, ANG II increased PVN Nrf2 mRNA in VEH-treated rats but not in S1-treated rats. These data suggest that S1 exposure has no effect on BP, but post-S1 exposure increases susceptibility to ANG II-induced hypertension by downregulating PVN Nrf2 to promote neuroinflammation and oxidative stress and augment sympathetic excitation.

2.
J Virol ; 97(6): e0058923, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-20236657

ABSTRACT

The inflammasome pathway is a critical early response mechanism of the host that detects pathogens, initiates the production of inflammatory cytokines, and recruits effector cells to the infection site. Nonetheless, the mechanism of inflammasome activation in coronavirus infection and its biological functions in host defense remain unclear. Transmissible gastroenteritis virus (TGEV), a member of the genus Alphacoronavirus, is a significant pathogen that mainly infects piglets and causes intestinal inflammation and inflammatory cell infiltration. Here, we investigated the mechanism of inflammasome activation in intestinal epithelial cells (IECs) infected with TGEV. We observed a substantial increase in interleukin 1ß (IL-1ß) and IL-18 levels in both IECs and TGEV-infected porcine intestinal tissues. Furthermore, TGEV infection resulted in increased activation of caspase-1 and the NLRP1 (NOD-like receptor [NLR]-containing pyrin domain [PYD]) inflammasome. Our findings revealed that TGEV infection impeded the interaction between porcine NLRP1 (pNLRP1) and porcine dipeptidyl peptidases 9 (pDPP9), yet it did not reduce the expression of pDPP9. Importantly, the ZU5 domain, not the function-to-find domain (FIIND) reported in human NLRP1, was identified as the minimal domain of pNLRP1 for pDPP9 binding. In addition, the robust type I IFN expression induced by TGEV infection also upregulated pNLRP1 expression and pNLRP1 itself acts as an interferon-stimulated gene to counteract TGEV infection. Our data demonstrate that pNLRP1 has antiviral capabilities against coronavirus infection, which highlights its potential as a novel therapeutic target for coronavirus antiviral therapy. IMPORTANCE Coronavirus primarily targets the epithelial cells of the respiratory and gastrointestinal tracts, leading to damage in both humans and animals. NLRP1 is a direct sensor for RNA virus infection which is highly expressed in epithelial barrier tissues. However, until recently, the precise molecular mechanisms underlying its activation in coronavirus infection and subsequent downstream events remained unclear. In this study, we demonstrate that the alphacoronavirus TGEV induces the production of IL-1ß and IL-18 and upregulates the expression of pNLRP1. Furthermore, we found that pNLRP1 can serve as an interferon-stimulated gene (ISG) to inhibit the infection of enterovirus TGEV. Our research highlights the crucial role of NLRP1 as a regulator of innate immunity in TGEV infection and shows that it may serve as a potential therapeutic target for the treatment of coronavirus infection.


Subject(s)
Gastroenteritis, Transmissible, of Swine , Inflammasomes , NLR Proteins , Transmissible gastroenteritis virus , Animals , Inflammasomes/immunology , Interferon Type I , Interleukin-18 , NLR Proteins/immunology , Swine , Gastroenteritis, Transmissible, of Swine/immunology , Gastroenteritis, Transmissible, of Swine/transmission
3.
Front Immunol ; 14: 1129705, 2023.
Article in English | MEDLINE | ID: covidwho-2288994

ABSTRACT

COVID-19 pandemic continues to spread throughout the world with an urgent demand for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a bacterial vector COVID-19 vaccine (aPA-RBD) that carries the gene for the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Live-attenuated strains of Pseudomonas aeruginosa (aPA) were constructed which express the recombinant RBD and effectively deliver RBD protein into various antigen presenting cells through bacterial type 3 secretion system (T3SS) in vitro. In mice, two-dose of intranasal aPA-RBD vaccinations elicited the development of RBD-specific serum IgG and IgM. Importantly, the sera from the immunized mice were able to neutralize host cell infections by SARS-CoV-2 pseudovirus as well as the authentic virus variants potently. T-cell responses of immunized mice were assessed by enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) assays. aPA-RBD vaccinations can elicit RBD-specific CD4+and CD8+T cell responses. T3SS-based RBD intracellular delivery heightens the efficiency of antigen presentation and enables the aPA-RBD vaccine to elicit CD8+T cell response. Thus, aPA vector has the potential as an inexpensive, readily manufactured, and respiratory tract vaccination route vaccine platform for other pathogens.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , Type III Secretion Systems , COVID-19/prevention & control , Pandemics , SARS-CoV-2
4.
Am J Chin Med ; 51(3): 651-676, 2023.
Article in English | MEDLINE | ID: covidwho-2269325

ABSTRACT

Pulmonary fibrosis (PF) is a progressive pulmonary disease with no effective treatment and high mortality. Resveratrol has shown promising benefits in the treatment of PF. However, the probable efficacy and underlying mechanism of resveratrol in PF treatment remain unclear. This study investigates the intervention effects and potential mechanisms underpinning the treatment of PF with resveratrol. The histopathological analysis of lung tissues in PF rats showed that resveratrol improved collagen deposition and reduced inflammation. Resveratrol decreased the levels of collagen, glutathione, superoxide dismutase, myeloperoxidase, and hydroxyproline, lowered total anti-oxidant capacity, and suppressed the migration of TGF-[Formula: see text]1 and LPS-induced 3T6 fibroblasts. With resveratrol intervention, the protein and RNA expressions of TGF-[Formula: see text]1, a-SMA, Smad3/4, p-Smad3/4, CTGF, and p-ERK1/2 were markedly downregulated. Similarly, the protein and RNA expression levels of Col-1 and Col-3 were significantly downregulated. However, Smad7 and ERK1/2 were evidently upregulated. The protein and mRNA expression levels of TGF-[Formula: see text], Smad, and p-ERK correlated positively with the lung index, while the protein and mRNA expression levels of ERK correlated negatively with the lung index. These results reveal that resveratrol may have therapeutic effects on PF by reducing collagen deposition, oxidation, and inflammation. The mechanism is associated with the regulation of the TGF-[Formula: see text]/Smad/ERK signaling pathway.


Subject(s)
Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Signal Transduction , Transforming Growth Factor beta/metabolism , Inflammation , RNA, Messenger , RNA/adverse effects
5.
Arch Virol ; 168(4): 112, 2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2256886

ABSTRACT

In this study, rectal samples collected from 60 stray dogs in dog shelters were screened for canine kobuvirus and other enteroviruses by quantitative real-time reverse transcription polymerase chain reaction. Canine kobuvirus was detected in 25% (15/60) of the samples. In the 15 positive samples, the coinfection rates of canine distemper virus, canine coronavirus, canine astrovirus, canine norovirus, and canine rotavirus were 26.67%, 20.00%, 73.33%, 0%, and 20.00%, respectively. Phylogenetic analysis based on partial VP1 sequences identified a novel canine kobuvirus that was a recombinant of canine and feline kobuvirus. Bayesian evolutionary analysis revealed that the rate of evolution of the VP1 gene of canine kobuvirus was 1.36 × 10-4 substitutions per site per year (95% highest posterior density interval, 6.28 × 10-7 - 4.30 × 10-4 substitutions per site per year). Finally, the divergence time of VP1 was around 19.44 years ago (95% highest posterior density interval, 12.96-27.57 years).


Subject(s)
Cat Diseases , Dog Diseases , Kobuvirus , Picornaviridae Infections , Dogs , Animals , Cats , Kobuvirus/genetics , Phylogeny , Bayes Theorem , China/epidemiology , Feces
6.
mBio ; : e0360021, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-2288768

ABSTRACT

Pyroptosis, a programmed cell death, functions as an innate immune effector mechanism and plays a crucial role against microbial invasion. Gasdermin D (GSDMD), as the main pyroptosis effector, mediates pyroptosis and promotes releasing proinflammatory molecules into the extracellular environment through pore-forming activity, modifying inflammation and immune responses. While the substantial importance of GSDMD in microbial infection and cancer has been widely investigated, the role of GSDMD in virus infection, including coronaviruses, remains unclear. Enteric coronavirus transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) are the major agents for lethal watery diarrhea in neonatal pigs and pose the potential for spillover from pigs to humans. In this study, we found that alphacoronavirus TGEV upregulated and activated GSDMD, resulting in pyroptosis after infection. Furthermore, the fragment of swine GSDMD from amino acids 242 to 279 (242-279 fragment) was required to induce pyroptosis. Notably, GSDMD strongly inhibited both TGEV and PDCoV infection. Mechanistically, the antiviral activity of GSDMD was mediated through promoting the nonclassical release of antiviral beta interferon (IFN-ß) and then enhancing the interferon-stimulated gene (ISG) responses. These findings showed that GSDMD dampens coronavirus infection by an uncovered GSDMD-mediated IFN secretion, which may present a novel target of coronavirus antiviral therapeutics. IMPORTANCE Coronaviruses, primarily targeting respiratory and gastrointestinal epithelia in vivo, have a serious impact on humans and animals. GSDMD, a main executioner of pyroptosis, is highly expressed in epithelial cells and involves viral infection pathogenesis. While the functions and importance of GSDMD as a critical regulator of inflammasome activities in response to intracellular bacterial infection have been extensively investigated, the roles of GSDMD during coronavirus infection remain unclear. We here show that alphacoronavirus TGEV triggered pyroptosis and upregulated GSDMD expression, while GSDMD broadly suppressed the infection of enteric coronavirus TGEV and PDCoV by its pore-forming activity via promoting unconventional release of IFN-ß. Our study highlights the importance of GSDMD as a regulator of innate immunity and may open new avenues for treating coronavirus infection.

7.
Front Microbiol ; 13: 1093646, 2022.
Article in English | MEDLINE | ID: covidwho-2245651

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome (MERS), and the recent SARS-CoV-2 are lethal coronaviruses (CoVs) that have caused dreadful epidemic or pandemic in a large region or globally. Infections of human respiratory systems and other important organs by these pathogenic viruses often results in high rates of morbidity and mortality. Efficient anti-viral drugs are needed. Herein, we firstly take SARS-CoV-2 as an example to present the molecular mechanism of CoV infection cycle, including the receptor binding, viral entry, intracellular replication, virion assembly, and release. Then according to their mode of action, we provide a summary of anti-viral peptides that have been reported in peer-reviewed publications. Even though CoVs can rapidly evolve to gain resistance to the conventional small molecule drugs, peptide-based inhibitors targeting various steps of CoV lifecycle remain a promising approach. Peptides can be continuously modified to improve their antiviral efficacy and spectrum along with the emergence of new viral variants.

8.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2236139

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome (MERS), and the recent SARS-CoV-2 are lethal coronaviruses (CoVs) that have caused dreadful epidemic or pandemic in a large region or globally. Infections of human respiratory systems and other important organs by these pathogenic viruses often results in high rates of morbidity and mortality. Efficient anti-viral drugs are needed. Herein, we firstly take SARS-CoV-2 as an example to present the molecular mechanism of CoV infection cycle, including the receptor binding, viral entry, intracellular replication, virion assembly, and release. Then according to their mode of action, we provide a summary of anti-viral peptides that have been reported in peer-reviewed publications. Even though CoVs can rapidly evolve to gain resistance to the conventional small molecule drugs, peptide-based inhibitors targeting various steps of CoV lifecycle remain a promising approach. Peptides can be continuously modified to improve their antiviral efficacy and spectrum along with the emergence of new viral variants.

9.
Front Immunol ; 13: 1039618, 2022.
Article in English | MEDLINE | ID: covidwho-2224772

ABSTRACT

Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.


Subject(s)
Hepatopulmonary Syndrome , Humans , Hepatopulmonary Syndrome/etiology , Hepatopulmonary Syndrome/pathology , Glycocalyx/pathology , Lung/pathology , Vasodilation , Ligation
10.
Frontiers in endocrinology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2147820

ABSTRACT

Aims The global COVID-19 pandemic has required a drastic transformation of prenatal care services. Whether the reformulation of the antenatal care systems affects maternal and infant outcomes remains unknown. Particularly, women with gestational diabetes mellitus (GDM) are among those who bear the greatest brunt. Thus, this study aimed to evaluate the impact of COVID-19 lockdown during late pregnancy on maternal and infant outcomes in women stratified by the GDM status in China. Study design The participants were women who experienced the COVID-19 lockdown during late pregnancy (3185 in the 2020 cohort) or not (2540 in the 2019 cohort) that were derived from the Beijing Birth Cohort Study. Maternal metabolic indicators, neonatal outcomes, and infant anthropometrics at 12 months of age were compared between the two cohorts, stratified by the GDM status. Results Participants who experienced COVID-19 lockdown in late pregnancy showed lower gestational weight gain than those in the control cohort. Nevertheless, they displayed a worse metabolic profile. COVID-19 lockdown during pregnancy was associated with higher glycosylated hemoglobin (HbA1c) (β= 0.11, 95% CI = 0.05–0.16, q-value = 0.002) and lower high density lipoprotein cholesterol level (HDL-C) level (β=–0.09, 95% CI = –0.14 to –0.04, q-value = 0.004) in women with GDM, adjusted for potential confounders. In normoglycemic women, COVID-19 lockdown in late pregnancy was associated with higher fasting glucose level (β= 0.10, 95% CI = 0.08–0.12, q-value <0.0001), lower HDL-C level (β=–0.07, 95% CI = –0.08 to –0.04, q-value <0.0001), and increased risk of pregnancy-induced hypertension (adjusted OR=1.80, 95%CI=1.30–2.50, q-value=0.001). The fasting glucose level decreased less from early to late pregnancy in women who experienced COVID-19 lockdown than in the controls, regardless of the GDM status. The HDL-C has risen less with COVID-19 lockdown in the normoglycemic subgroup. In contrast, no significant differences regarding neonatal outcomes or infant weight were found between the two cohorts. Conclusion Experiencing the COVID-19 lockdown in pregnancy was associated with worse maternal metabolic status but similar neonatal outcomes and infant weight.

11.
Int J Gen Med ; 15: 8353-8363, 2022.
Article in English | MEDLINE | ID: covidwho-2154472

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains an uncontained, worldwide pandemic. While battling the disease in China, the Chinese government has actively promoted the use of traditional Chinese medicine, and many studies have been conducted to determine the efficacy of traditional Chinese medicine for treating COVID-19. The present review discusses the effectiveness and safety of traditional Chinese medicine in curing COVID-19 and provides clinical evidence from all confirmed cases in China. Applications of traditional Chinese medicine and specific recipes for treating other viral infections, such as those caused by severe acute respiratory syndrome coronavirus and influenza A viruses (including H1N1), are also discussed. Studies have reported that traditional Chinese medicine treatment plays a significant role in improving clinical symptoms. Therefore, further investigation may be of high translational value in revealing novel targeted therapies for COVID-19.

13.
J Virol ; : e0138822, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2137418

ABSTRACT

Type III interferons (IFN-λ) are shown to be preferentially produced by epithelial cells, which provide front-line protection at barrier surfaces. Transmissible gastroenteritis virus (TGEV), belonging to the genus Alphacoronavirus of the family Coronaviridae, can cause severe intestinal injuries in porcine, resulting in enormous economic losses for the swine industry, worldwide. Here, we demonstrated that although IFN-λ1 had a higher basal expression, TGEV infection induced more intense IFN-λ3 production in vitro and in vivo than did IFN-λ1. We explored the underlying mechanism of IFN-λ induction by TGEV and found a distinct regulation mechanism of IFN-λ1 and IFN-λ3. The classical RIG-I-like receptor (RLR) pathway is involved in IFN-λ3 but not IFN-λ1 production. Except for the signaling pathways mediated by RIG-I and MDA5, TGEV nsp1 induces IFN-λ1 and IFN-λ3 by activating NF-κB via the unfolded protein responses (UPR) PERK-eIF2α pathway. Furthermore, functional domain analysis indicated that the induction of IFN-λ by the TGEV nsp1 protein was located at amino acids 85 to 102 and was dependent on the phosphorylation of eIF2α and the nuclear translocation of NF-κB. Moreover, the recombinant TGEV with the altered amino acid motif of nsp1 85-102 was constructed, and the nsp1 (85-102sg) mutant virus significantly reduced the production of IFN-λ, compared with the wild strain. Compared to the antiviral activities of IFN-λ1, the administration of IFN-λ3 showed greater antiviral activity against TGEV infections in IPEC-J2 cells. In summary, our data point to the significant role of IFN-λ in the host innate antiviral responses to coronavirus infections within mucosal organs and in the distinct mechanisms of IFN-λ1 and IFN-λ3 regulation. IMPORTANCE Coronaviruses cause infectious diseases in various mammals and birds and exhibit an epithelial cell tropism in enteric and respiratory tracts. It is critical to explore how coronavirus infections modulate IFN-λ, a key innate cytokine against mucosal viral infection. Our results uncovered the different processes of IFN-λ1 and IFN-λ3 production that are involved in the classical RLR pathway and determined that TGEV nsp1 induces IFN-λ1 and IFN-λ3 production by activating NF-κB via the PERK-eIF2α pathway in UPR. These studies highlight the unique regulation of antiviral defense in the intestine during TGEV infection. We also demonstrated that IFN-λ3 induced greater antiviral activity against TGEV replication than did IFN-λ1 in IPEC-J2 cells, which is helpful in finding a novel strategy for the treatment of coronavirus infections.

14.
Int J Environ Res Public Health ; 19(19)2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2065980

ABSTRACT

It remains unknown which size fractions dominate the adverse cardiopulmonary effects of particulate matter (PM). Therefore, this study aimed to explore the differential associations between size-fractioned particle number concentrations (PNCs) and cardiopulmonary function measures, including the forced expiratory volume in one second (FEV1), the forced vital capacity (FVC), and the left ventricular ejection fraction (LVEF). We conducted a panel study among 211 patients with chronic obstructive pulmonary disease (COPD) in Shanghai, China, between January 2014 and December 2021. We applied linear mixed-effect models to determine the associations between cardiopulmonary function measures and PNCs ranging from 0.01 to 10 µm in diameter. Generally, only particles <1 µm showed significant associations, i.e., ultrafine particles (UFPs, <0.1 µm) for FVC and particles ranging from 0.1 to 1 µm for FEV1 and LVEF. An interquartile range (IQR) increment in UFP was associated with decreases of 78.4 mL in FVC. PNC0.1-0.3 and PNC0.3-1 corresponded to the strongest effects on FEV1 (119.5 mL) and LVEF (1.5%) per IQR increment. Particles <1 µm might dominate the cardiopulmonary toxicity of PM, but UFPs might not always have the strongest effect. Tailored regulations towards particles <1 µm should be intensified to reduce PM pollution and protect vulnerable populations.


Subject(s)
Air Pollutants , Air Pollution , Pulmonary Disease, Chronic Obstructive , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Environmental Exposure/adverse effects , Humans , Particle Size , Particulate Matter/analysis , Stroke Volume , Ventricular Function, Left
15.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2151226.v1

ABSTRACT

The COVID-19 epidemic is raging around the world, including the emergence of viral mutant strains such as Delta and Omicron, posing severe challenges to people's health and quality of life. Full understanding life cycle of the virus in host cells helps to reveal inactivation mechanism of antibody and provide inspiration for the development of a new-generation vaccines. In this work, molecular recognitions and conformational changes of SARS-CoV-2 spike protein (SP) mutants (i.e., Delta, Mu and Omicron) and three essential partners (i.e., membrane receptor hACE2, protease TMPRSS2 and antibody C121) both were compared and analyzed using molecular simulations. Water basin and binding free energy calculations both show that the three mutants possess higher affinity for hACE2 than WT, exhibiting stronger virus transmission. The descending order of cleavage ability by TMPRSS2 is Mu, Delta, Omicron and WT, which is related to the new S1/S2 cutting site induced by transposition effect. The inefficient utilization of TMPRSS2 by Omicron is consistent with its primary entry into cells via the endosomal pathway. In addition, RBD-directed antibody C121 showed obvious resistance to Omicron, which may have originated from high fluctuation of approaching angles, high flexibility of I472-F490 loop and reduced binding ability. According to the overall characteristics of the three mutants, high infectivity, high immune escape and low virulence may be the future evolutionary selection of SARS-CoV-2. In a word, this work not only proposes the possible resistance mechanism of SARS-CoV-2 mutants, but also provides theoretical guidance for the subsequent drug design against COVID-19 based on SP structure.


Subject(s)
COVID-19
16.
International Journal of Ophthalmology ; 15(9):1544-1548, 2022.
Article in English | EuropePMC | ID: covidwho-2034553

ABSTRACT

AIM To report a case which keratitis is the first clinical manifestation of COVID-19 that occurred 3d earlier than the common COVID-19 symptoms. METHODS Regular slit lamp examination, corneal scraping test, and chest computed tomography (CT) were performed for patients with COVID-19 infection. The ophthalmologic treatment included ganciclovir eye drop (50 mg/mL, 6 times/d). The treatment for diarrhea included Guifu Lizhong pills (TID). The antiviral therapy consisted of oseltamivir (75 mg capsule Q12H);therapy preventing bacterial infection consisted of azithromycin (250 mg tablet QD) and moxifloxacin (0.4 g tablet Q12H);and therapy for cough relief and fever prevention consisted of Chinese herbal decoction. RESULTS A 35-year-old male suddenly suffered pain, photophobia, and tears in his right eye for one day without systemic COVID-19 symptoms. Patient was diagnosed with keratitis, which was seemingly different from common keratitis. Ganciclovir eye drop was initiated. The corneal scraping test for COVID-19 was positive. The chest CT images were abnormal confirming the diagnosis of COVID-19 infection. The antiviral and antibacterial therapies were initiated. Chinese herbal therapy was used for cough relief and fever prevention. After roughly two weeks, patient recovered from COVID-19. CONCLUSION A new type of keratitis, atypical keratitis, is a clinical manifestation of COVID-19, and this clinical manifestation could appear 3d earlier than fever and cough. The earlier a COVID-19 clinical manifestation is identified, the earlier can a patient be directed to stay at home, and significantly fewer people would be infected.

17.
Front Immunol ; 13: 954121, 2022.
Article in English | MEDLINE | ID: covidwho-2022737

ABSTRACT

Although tremendous effort has been exerted to elucidate the pathogenesis of severe COVID-19 cases, the detailed mechanism of moderate cases, which accounts for 90% of all patients, remains unclear yet, partly limited by lacking the biopsy tissues. Here, we established the COVID-19 infection model in cynomolgus macaques (CMs), monitored the clinical and pathological features, and analyzed underlying pathogenic mechanisms at early infection stage by performing proteomic and metabolomic profiling of lung tissues and sera samples from COVID-19 CMs models. Our data demonstrated that innate immune response, neutrophile and platelet activation were mainly dysregulated in COVID-19 CMs. The symptom of neutrophilia, lymphopenia and massive "cytokines storm", main features of severe COVID-19 patients, were greatly weakened in most of the challenged CMs, which are more semblable as moderate patients. Thus, COVID-19 model in CMs is rational to understand the pathogenesis of moderate COVID-19 and may be a candidate model to assess the safety and efficacy of therapeutics and vaccines against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19 Vaccines , Humans , Macaca fascicularis , Proteomics
18.
Nat Nanotechnol ; 17(9): 993-1003, 2022 09.
Article in English | MEDLINE | ID: covidwho-2000903

ABSTRACT

The global emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can only be solved with effective and widespread preventive and therapeutic strategies, and both are still insufficient. Here, we describe an ultrathin two-dimensional CuInP2S6 (CIPS) nanosheet as a new agent against SARS-CoV-2 infection. CIPS exhibits an extremely high and selective binding capacity (dissociation constant (KD) < 1 pM) for the receptor binding domain of the spike protein of wild-type SARS-CoV-2 and its variants of concern, including Delta and Omicron, inhibiting virus entry and infection in angiotensin converting enzyme 2 (ACE2)-bearing cells, human airway epithelial organoids and human ACE2-transgenic mice. On association with CIPS, the virus is quickly phagocytosed and eliminated by macrophages, suggesting that CIPS could be successfully used to capture and facilitate virus elimination by the host. Thus, we propose CIPS as a promising nanodrug for future safe and effective anti-SARS-CoV-2 therapy, and as a decontamination agent and surface-coating material to reduce SARS-CoV-2 infectivity.


Subject(s)
COVID-19 Drug Treatment , Nanostructures , Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Nanostructures/therapeutic use , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
19.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(7):825-832, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1994655

ABSTRACT

In order to establish a method for rapid differential identification of Senecavirus A (SVA) and en-cephalomyocarditis virus (EMCV), two pairs of corresponding specific primers were designed based on the highly conserved 3D genes of SVA and EMCV. And two different fluorescent labeled TaqMan probes were used to establish a dual TaqMan real-time PCR method for simultaneous detection of these two viruses, and we also optimize the reaction conditions. The results showed that the minimum detection of the method was 760 copies/ micro L and 98 copies/ micro L for SVA and EMCV. respectively, and it can specifically detect SVA and EMCV, and there was no cross reaction with CSFV, PRRSV and PEDV. The established standard curves showed good linear relationship. Repeated experimental group and inter-group coefficient of variation were less than 5%. The results indicated that the dual-quantitative PCR established in this study has the advantages of convenience, rapidity, good specificity. high sensitivity and good repeatability .and can be used for simultaneous detection of SVA and EMCV.

20.
Vet Microbiol ; 272: 109516, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1991332

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is one of the main pathogens causing severe diarrhea in piglets. Infection of the host induces apoptosis, causing huge economic losses to the pig industry. At present, the preventive and therapeutic effects of commercial vaccines are not satisfactory, and it is necessary to develop new anti-PEDV drugs. In this study, we screened the PEDV-inhibiting drug Buddlejasaponin IVb from the natural product library, and determined the inhibitory effect of Buddlejasaponin IVb on PEDV proliferation in a dose-dependent manner. By exploring the effect of Buddlejasaponin IVb on the life cycle of PEDV, it was found that Buddlejasaponin IVb mainly inhibits the replication and release stages of PEDV, but there is no report at home and abroad. In addition, Buddlejasaponin IVb can inhibit PEDV-activated NF-κB signaling pathway by downregulating PEDV or LPS induced elevation of cytokine levels (IL-6, IL-8, IL-1ß, TNF-α). Finally, we returned to in vivo experiments to explore the antiviral effects of the drug in pigs. The results show that Buddlejasaponin IVb can effectively relieve the clinical symptoms and intestinal damage caused by PEDV infection in pigs. Therefore, this study will provide an important basis for the research on antiviral drugs of PEDV and its members, and at the same time provide guidance for the actual production, which has important application prospects.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Saponins , Swine Diseases , Animals , Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , NF-kappa B/metabolism , Saponins/pharmacology , Swine , Swine Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL